
Page 1

CS 111: Programing Assignment 3:

Filtering in Frequency Domain

Submission instructions:

Please submit your code, output images and a PDF file (containing the output

images) in a single zip file to Canvas. You must also submit the same PDF file to

Gradescope.

BOTH submissions are required for full points.

Your work is due by 11:59 p.m. on Wednesday, the 8th of May.

Introduction:

This programming assignment is focused on understanding the frequency domain. You will

create some synthetic images and observe their DFTs. You will also apply filters in the

frequency domain.

You will be using some OpenCV functions and the functions given to you in pa3.cpp. In this

assignment, you should work with gray images only. So, use CV_LOAD_IMAGE_GRAYSCALE

when reading your images.

Discrete Fourier Transform:

I. DFT

a. DFT is used in signal processing to examine the frequency

component of a discrete signal. DFT for a 1-D signal is defined

as:

𝑋[𝑘] = ∑

𝑁−1

𝑛=0

𝑥[𝑛]𝑒−𝑖
2𝜋𝑘

𝑁
𝑛

for discrete signal 𝑥[𝑛] with length of 𝑁 (non-zero values are from 0 to

𝑁 − 1). Note that 𝑋[𝑘] is a periodic complex discrete signal with

period of 𝑁. The lowest frequency component of 𝑥[𝑛] is 𝑋[0] which

is also called DC value. The highest frequency of signal is 𝑋[
𝑁

2
], or

where 𝑘 =
𝑁

2
. If 𝑥[𝑛] is a real signal (e.g. images) the values of 𝑋[𝑘]

for 𝑘 =
𝑁

2
… 𝑁 − 1 is complex conjugate of values of 𝑋[𝑘] for 𝑘 = 1…

𝑁

2
.

Page 2

b. We can recover our signal using the DFT values. This operation

is Inverse Fourier Transform and it is defined as:

𝑥[𝑛] = ∑

𝑁−1

𝑘=0

𝑋[𝑘]𝑒𝑖
2𝜋𝑛

𝑁
𝑘

c. In image processing, we deal with 2-D signals. The DFT can be

extended for 2-D signals as well. If we assume that our image

is a 2-D signal as 𝑥[𝑚, 𝑛] and the size of the image is 𝑀 × 𝑁, then

the DFT and IDFT for this signal are:

𝐷𝐹𝑇: 𝑋[𝑘, 𝑙] = ∑

𝑀−1

𝑚=0

∑

𝑁−1

𝑛=0

𝑥[𝑚, 𝑛]𝑒−𝑖
2𝜋𝑙

𝑁
𝑛𝑒−𝑖

2𝜋𝑘
𝑀

𝑚

𝐼𝐷𝐹𝑇: 𝑥[𝑚, 𝑛] = ∑

𝑀−1

𝑚=0

∑

𝑁−1

𝑛=0

𝑋[𝑘, 𝑙]𝑒−𝑖
2𝜋𝑛

𝑁
𝑙𝑒−𝑖

2𝜋𝑚
𝑀

𝑘

In this assignment, the functions for calculating DFT and IDFT are

provided. Functions DFT(Mat Input, Mat& Real, Mat& Imag) and

IDFT(Mat& Input, Mat Real, Mat Imag) calculate the DFT and

IDFT, respectively.

d. One of the ways to understand the DFT values is by converting

the complex number (Cartesian coordinate) into magnitude and

phase (Polar coordinate). Higher values in magnitude tell us that

the signal has more of those frequencies. In this assignment, we

use the OpenCV functions for converting matrices with complex

numbers into matrices with magnitude and phase. The reverse

of this is done using a single OpenCV function polarToCart.

// R is the matrix of real parts (Input)

// I is the matrix of imaginary parts (Input)

magnitude(R, I, M);

phase(R, I, P);

// M is the matrix of magnitude (Output)

// P is the matrix of phase (output)

polarToCart(M, P, R, I)

// M and P are input and R and I are output

e. We are more comfortable with visualizing the DFT values such

that the DC value (𝑘 = 0, 𝑙 = 0) at the center. As mentioned in

I.1, the DFT values are periodic and the second half is the

complex conjugate of the first half. So, by bringing the DC value

at the center the values will be in the range of 𝑘 = −
𝑁

2
…0…

𝑁

2
. In

this assignment, the function DFTShift(Mat& I) is provided that

applies this shifting on the DFT values I.

Page 3

f. The magnitude and phase values are not integers and their

dynamic range might be greater than 0-255. In order to save

the magnitude and phase as an image we should normalize

them. To do so, you can use OpenCV normalize function, and

then convert it to CV_8UC1.

// I input matrix to be normalized

// J output matrix normalized

normalize(I, J, 0, 255, NORM_MINMAX);

// K output matrix of type CV_8UC1

J.convertTo(K, CV_8UC1);

II. Creating Images

a. In order to examine how the DFT works, we want to create some

512x512 gray image composed of sinusoids with different

frequencies. You should implement the following formulae in

images:

𝐼1(𝑥, 𝑦) = 1 + 𝑠𝑖𝑛 (0.1𝜋𝑥)

𝐼2(𝑥, 𝑦) = 1 +𝑐𝑜𝑠 𝑐𝑜𝑠 (0.2𝜋𝑦)

𝐼3(𝑥, 𝑦) = 1 +𝑐𝑜𝑠 𝑐𝑜𝑠 (0.4𝜋𝑥)

𝐼4(𝑥, 𝑦) = 1 + 𝑠𝑖𝑛 (0.15𝜋 √𝑥2 + 𝑦2)

𝐼5(𝑥, 𝑦) = 1 + 𝑠𝑖𝑛 (0.35𝜋 √𝑥2 + 𝑦2)

where 𝑥 is the column and 𝑦 is the row values.

b. Note that the matrix should be of type of CV_32FC1 to keep the

floating point values. After implementing the formulae,

normalize the Mat and convert it into CV_8UC1 the same way

explained in Part-I.f.

 Submit the images names “I1.png” to “I5.png”.

You don’t need to provide the code for the generating

these images.

c. Once you create the images, you should take the DFT of the

images using the functions provided (Part-I.c). Then, convert

Page 4

the DFT values into magnitude and phase (Part-I.d). Then, apply

DFTShift to bring the DC value to the center (Part-I.e). Finally,

normalize magnitudes and save them as images “mag1.png” to

“mag5.png”, respectively.

 Submit the images “mag1.png” to “mag5.png”. You

don’t need to provide the code for the steps you did to

create these images

Notch Filter

III. Interference

a. Due to some reason the signal may be contaminated with some

periodic noise. In medical signal processing, it is very common

that the vital signals (e.g. ECG, EKG) being corrupted by

addition of some noise coming from the AC power. In the United

States, the AC power has frequency of 60 Hz, and the medical

signal has some added noise of this frequency. So, it is common

that this signal should be filtered out before further processing.

b. In this assignment, we intentionally corrupted a gray image

(uci.jpg) by adding a certain frequency of sinusoids. By, taking

the DFT of the noisy image and looking into the magnitude of

the DFT, you can estimate the frequency of the added noise.

IV. Multiplying in Frequency Domain

a. Recall that convolution and multiplication have the property of

duality in spatial and frequency (DFT) domains. This means that

convolution in the spatial domain is equal to multiplication in

frequency domain and vice versa. In frequency domain, since

Page 5

we can find the noise frequencies, we can remove those

frequencies by setting their magnitude to zero. We can do that

by multiplying a mask on DFT magnitude to set the unwanted

frequencies to zero.

b. As discussed in section I, DFT is an invertible mapping, so we

can recover the image by applying IDFT on the DFT values. So,

after any manipulation in the frequency domain we can apply

IDFT and create the image. For this reason, we can create

masks that block unwanted frequencies. In this assignment, we

want a mask to set the magnitude of the unwanted noise to

zero. So, this mask should act as a Notch filter. A Notch filter is

the opposite of a bandpass filter (also known as bandstop filter),

therefore, it stops some bands of frequencies. A 2-D Notch filter

is like a black ring in a white square, where white means 1, and

black means 0, shown in the image below:

c. In this assignment, function NotchFilter(int s, int lowerCutOff,

int upperCutOff) returns a Mat of type ‘float’ with size sxs, and

the given cut-off frequencies. The lowerCutOff is the radius of

inner circle and the upperCutOff is the radius of the outer circle.

The values for cut-off frequency should be up to the half of the

image size. You should create the appropriate Notch filter to be

multiplied by the magnitude of the DFT of the noisy image, to

cancel the periodic noise from the image.

d. However, it is not as simple as canceling the unwanted noise

and recovering the the original image. Recall that box functions

are the dual of Sinc functions. That is why if you convolve your

image with a box filter, you will introduce some leakage

frequencies, since the DFT of a box filter is a Sinc. Here, if you

multiply the DFT by the mask (which is like a box function), it is

similar to convolving the image with the Sinc function. Since the

Sinc function has “rings”, you will see ringing effects in your

image after IDFT.

e. In order to prevent introducing ringing effects into our image,

we should smooth our mask by applying some Gaussian filter.

Page 6

Here, you don’t need to write the Gaussian filter, and you can

use the OpenCV function GaussianBlur, to do that for you.

// I input mask

// J output smoothed mask

// s size of flter (e.g. 9)

// sigma: std of the gaussian (e.g. 5)

GaussianBlur(I, J, Size(s,s), sigma);

f. Here is the steps you should do:

i. Calculate DFT of “uci.jpg”

ii. Calculate magnitude from real part and imaginary part

iii. Apply DFTShift to center the DC value

iv. Using normalize and convertTo, visualize the normalized magnitude of the image

(don’t overwrite the magnitude since the original magnitude is needed for IDFT)

v. Spot the bright points in the magnitude image

vi. Use NotchFilter to create a ring that removes the bright spots

vii. Smooth the ring using GaussianBlur function

viii. Multiply the smoothed ring with magnitude (the actual magnitude, not the

normalized one)

ix. Check if the bright spots are gone in magnitude image (if not go to Part-vi)

x. Use DFTShift to bring the magnitude back to its original, unshifted form

xi. Use polarToCart to convert magnitude and phase into real part and imaginary

parts

xii. Use IDFT function to calculate the image from the manipulated DFT

xiii. If the image looks good, save and submit it, otherwise repeat the process

again, by changing the parameters.

 Submit the recovered image “uci_denoised.jpg”

and your smooth mask “mask.png”.

